Наименьший общий знаменатель (НОЗ) алгебраических дробей, его нахождение

Наименьший общий знаменатель (НОЗ) алгебраических дробей, его нахождение

    Большинство действий с алгебраическими дробями, такие, например, как сложение и вычитание, требуют предварительного приведения этих дробей к одинаковым знаменателям. Такие знаменатели также часто обозначаются словосочетанием «общий знаменатель». В данной теме мы рассмотрим определение понятий «общий знаменатель алгебраических дробей» и «наименьший общий знаменатель алгебраических дробей (НОЗ)», рассмотрим по пунктам алгоритм нахождения общего знаменателя и решим несколько задач по теме.

    Общий знаменатель алгебраических дробей

    Если говорить про обыкновенные дроби, то общим знаменателем является такое число, которое делится на любой из знаменателей исходных дробей. Для обыкновенных дробей 12 и 59 число 36 может быть общим знаменателем, так как без остатка делится на 2 и на 9.

    Общий знаменатель алгебраических дробей определяется похожим образом, только вместо чисел используются многочлены, так как именно они стоят в числителях и знаменателях алгебраической дроби.

    Определение 1

    Общий знаменатель алгебраической дроби – это многочлен, который делится на знаменатель любой из дробей.

    В связи с особенностями алгебраических дробей, речь о которых пойдет ниже, мы чаще будем иметь дело с общими знаменателями, представленными в виде произведения, а не в виде стандартного многочлена.

    Пример 1

    Многочлену, записанному в виде произведения 3·x2·(x+1), соответствует многочлен стандартного вида 3·x3+3·x2. Этот многочлен может быть общим знаменателем алгебраических дробей 2x, -3·x·yx2  и y+3x+1 , в связи с тем, что он делится на x, на x2 и на x+1. Информация о делимости многочленов есть в соответствующей теме нашего ресурса.

    Наименьший общий знаменатель (НОЗ)

    Для заданных алгебраических дробей количество общих знаменателей может быть бесконечное множество.

    Пример 2

    Возьмем для примера дроби 12·x  и x+1x2+3 . Их общим знаменателем является 2·x·(x2+3), как и 2·x·(x2+3), как и x·(x2+3), как и 6,4·x·(x2+3)·(y+y4), как и 31·x5·(x2+3)3, и т.п.

    При решении задач можно облегчить себе работу, используя общий знаменатель, который среди всего множества знаменателей имеет самый простой вид. Такой знаменатель часто обозначается как наименьший общий знаменатель.

    Определение 2

    Наименьший общий знаменатель алгебраических дробей – это общий знаменатель алгебраических дробей, который имеет самый простой вид.

    К слову,  термин «наименьший общий знаменатель» не является общепризнанным, потому лучше ограничиваться термином «общий знаменатель». И вот почему.

    Ранее мы сфокусировали ваше внимание на фразе «знаменатель самого простого вида». Основной смысл этой фразы следующий: на знаменатель самого простого вида должен без остатка делиться любой другой общий знаменатель данных в условии задачи алгебраических дробей. При этом в произведении, которое является общим знаменателем дробей, можно использовать различные числовые коэффициенты.

    Пример 3

    Возьмем дроби 12·x  и x+1x2+3 . Мы уже выяснили, что проще всего работать нам будет с общим знаменателем вида 2·x·(x2+3). Также общим знаменателем для этих двух дробей может быть x·(x2+3), который не содержит числового коэффициента. Вопрос в том, какой из этих двух общих знаменателей считать наименьшим общим знаменателем дробей. Однозначного ответа нет, потому правильнее говорить просто об общем знаменателе, а в работу брать тот вариант, с которым работать будет удобнее всего. Так, мы можем использовать и такие общие знаменатели как x2·(x2+3)·(y+y4) или 15·x5·(x2+3)3, которые имеют более сложный вид, но проводить с ними действия может быть сложнее.

    Нахождение общего знаменателя алгебраических дробей: алгоритм действий

    Предположим, что у нас имеется несколько алгебраических дробей, для которых нам необходимо отыскать общий знаменатель. Для решения этой задачи мы можем использовать следующий алгоритм действий. Сначала нам необходимо разложить на множители знаменатели исходных дробей. Затем мы составляем произведение, в которое последовательно включаем:

    • все множители из знаменателя первой дроби вместе со степенями;
    • все множители, присутствующие в знаменателе второй дроби, но которых нет в записанном произведении или их степень недостаточно;
    • все недостающие множители из знаменателя третьей дроби, и так далее.

    Полученное произведение и будет общим знаменателем алгебраических дробей.

    В качестве множителей произведения мы можем взять все знаменатели дробей, данных в условии задачи. Однако множитель, который мы получим в итоге, по смыслу будет далек от НОЗ и использование его будет иррациональным.

    Пример 4

    Определите общий знаменатель дробей 1x2·y, 5x+1  и y-3x5·y .

    Решение

    В данном случае у нас нет необходимости раскладывать знаменатели исходных дробей на множители. Потому начнем применять алгоритм с составления произведения.

    Из знаменателя первой дроби возьмем множитель x2·y, из знаменателя второй дроби множитель x+1. Получаем произведение x2·y·(x+1).

    Знаменатель третьей дроби может дать нам множитель x5·y, однако в составленном нами ранее произведении уже есть множители x2 и y. Следовательно, добавляем еще x52=x3. Получаем произведение x2·y·(x+1)·x3, которое можно привести к виду x5·y·(x+1). Это и будет наш НОЗ алгебраических дробей.

    Ответ: x5·y·(x+1).

    Теперь рассмотрим примеры задач, когда в знаменателях алгебраических дробей есть целые числовые множители. В таких случаях мы также действуем по алгоритму, предварительно разложив целые числовые множители на простые множители.

    Пример 5

    Найдите общий знаменатель дробей 112·x  и 190·x2 .

    Решение

    Разложив числа в знаменателях дробей на простые множители, получаем 122·3·x  и 12·32·5·x2 . Теперь мы можем перейти к составлению общего знаменателя. Для этого из знаменателя первой дроби возьмем произведение 22·3·x и добавим к нему множители 3, 5 и x из знаменателя второй дроби. Получаем 22·3·x·3·5·x=180·x2. Это и есть наш общий знаменатель.

    Ответ: 180·x2.

    Если внимательно посмотреть на результаты двух разобранных примеров, то можно заметить, что общие знаменатели дробей содержат все множители, присутствующие в разложениях знаменателей, причем если некоторый множитель имеется в нескольких знаменателях, то он берется с наибольшим из имеющихся показателей степени. А если в знаменателях имеются целые коэффициенты, то в общем знаменателе присутствует числовой множитель, равный наименьшему общему кратному этих числовых коэффициентов.

    Пример 6

    В знаменателях обеих алгебраических дробей 112·x  и 190·x2 есть множитель x. Во втором случае множитель x возведен в квадрат. Для составления общего знаменателя это  множитель нам необходимо взять в наибольшей степени, т.е. x2. Других множителей с переменными нет. Целые числовые коэффициенты исходных дробей 12 и 90, а их наименьшее общее кратное равно 180. Получается, что искомый общий знаменатель имеет вид 180·x2.

    Теперь мы можем записать еще один алгоритм нахождения общего множителя алгебраических дробей. Для этого мы:

    • раскладываем знаменатели всех дробей на множители;
    • составляем произведение всех буквенных множителей (при наличии множителя в нескольких разложениях, берем вариант с наибольшим показателем степени);
    • добавляем  НОК числовых коэффициентов разложений к полученному произведению.

    Приведенные алгоритмы равноценны, так что использовать в решении задач можно любой из них. Важно уделять внимание деталям.

    Встречаются случаи, когда общие множители в знаменателях дробей могут быть незаметны за числовыми коэффициентами. Здесь целесообразно сначала вынести числовые коэффициенты при старших степенях переменных за скобки в каждом из множителей, имеющихся в знаменателе.

    Пример 7

    Какой общий знаменатель имеют дроби 35-x  и 5-x·y22·x-10 .

    Решение

    В первом случае за скобки необходимо вынести минус единицу. Получаем 3-x-5 . Умножаем числитель и знаменатель на -1 для того, чтобы избавиться от минуса в знаменателе: -3x-5 .

    Во втором случае за скобку выносим двойку. Это позволяет нам получить дробь 5-x·y22·x-5 .

    Очевидно, что общий знаменатель данных алгебраических дробей -3x-5  и 5-x·y22·x-5  это 2·(x5).

    Ответ: 2·(x5).

    Данные в условии задачи дроби могут иметь дробные коэффициенты. В этих случаях необходимо сначала избавиться от дробных коэффициентов путем умножения числителя и знаменателя на некоторое число.

    Пример 8

    Упростите алгебраические дроби 12·x+1114·x2+17  и -223·x2+113 , после чего определите их общий знаменатель.

    Решение

    Избавимся от дробных коэффициентов, умножив числитель и знаменатель в первом случае на 14, во втором случае на 3. Получаем:

    12·x+1114·x2+17=14·12·x+114·114·x2+17=7·x+1x2+2  и -223·x2+113=3·-23·23·x2+43=-62·x2+4=-62·x2+2 .

    После проведенных преобразований становится понятно, что общий знаменатель – это 2·(x2+2).

    Ответ: 2·(x2+2).

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter