Зонная теория твердых тел, энергетические уровни и формирование энергетических зон

Зонная теория твердых тел

    Основываясь лишь на модели электронного газа невозможно объяснить тот факт, что одни вещества представляют собой проводники, вторые полупроводники, а третьи изоляторы. Стоит принимать во внимание взаимодействие между атомами и электронами. Предположим, что кристаллическая решетка металла или полупроводника сформирована как результат сближения атомов. Связь с атомными ядрами валентных электронов атомов металлов проявляет себя гораздо слабее, чем связь с подобными электронами полупроводников. При условии сближения атомов электроны приходят во взаимодействие. В результате валентные электроны разрывают свою связь с атомами металла, что делает их свободными, обладающими возможностью перемещаться по всему металлу.

    Определение 1

    В полупроводниках, по причине существенно более сильной связи электронов с ядрами атомов, для того, чтобы разорвать связь валентного электрона нужно сообщить ему так называемую энергию ионизации.

    Для разных полупроводников величина энергии ионизации может колебаться от 0,1 до 2 эВ, в то же время средняя кинетическая энергия теплового движения атома близка к 0,04 эВ. Количество атомов, энергия которых выше или эквивалентна энергии ионизации, относительно невелико. Соответственно, свободных электронов в полупроводниках не много. С увеличением температуры, число атомов с энергией ионизации повышается, а это значит, что растет и электрическая проводимость полупроводника.

    За процессом ионизации всегда идет сопровождение в виде обратного процесса, а именно рекомбинация. В условиях состояния равновесия среднее число актов ионизации эквивалентно количеству актов рекомбинации.

    Понятие о зонной теории

    Определение 2

    Квантовая теория электропроводности твердых тел основывается на так называемой зонной теории твердых тел, которая заключается в изучении энергетического спектра электронов.

    Определение 3

    Данный спектр подразделяется на разделенные запрещенными промежутками зоны. В случае, если в верхней зоне, где определяется присутствие электронов, они не заполняют каждое из квантовых состояний (в пределах зоны может быть проведено перераспределение энергии и импульса), то данное вещество представляет собой проводник. Подобная зона носит название зоны проводимости, вещество — проводника электрического тока, тип проводимости такого вещества является электронным.

    Если в зоне проводимости находится большое количество электронов и свободных квантовых состояний, то значение электропроводности велико. Электроны в условиях зоны проводимости при прохождении электрического тока определяются как носители заряда. Процесс движения подобных электронов может быть описан с помощью законов квантовой механики. Если проводить сравнение с общим количеством электронов, то число таких электронов может считаться малым.

    Энергетические уровни

    Энергетические уровни валентного электрона в одном изолированном атоме могут быть представлены таким образом, как это проиллюстрировано на рисунке 1. Снизу вверх по вертикали на рисунке 1 откладываются: величины полной энергии электрона, а также отмечаются минимальная энергия электронов проводимости Ec с наибольшим значением энергии связанных электронов Ev. Вероятные значения энергий электронов заполняют собой некоторую область или же так называемую зону энергии WEc. Такая зона представляет собой зону проводимости. Энергии электронов связи формируют другую зону с WEv. Приведенная зона носит название зоны валентных электронов или, другими словами, валентной зоны. Данные зоны разделены энергетическим промежутком с шириной, определяемой с помощью следующего выражения: Eg=EcEv.

    Такой энергетический промежуток представляет собой зону запрещенных энергий. В условиях отсутствующих примесных атомов, а также дефектов решетки, стационарные движения электронов с энергией внутри запрещенной зоны не представляются возможными.

    Рисунок 1

    Определение 4

    Процесс разрыва химической связи, который провоцирует возникновение электрона проводимости и положительной дырки, носит название электронного перехода.

    Определение 5

    Валентная зона — зона проводимости (смотрите рисунок 1 цифра 1).

    Обратный процесс определяется как рекомбинация электрона проводимости и положительной дырки (электронный переход 2, рисунок 1). В условиях существования атомов примеси вероятно возникновение дискретных разрешенных уровней энергии как ,например, уровень Ed, проиллюстрированный на рисунке 1. Данные уровни могут существовать не во всем объеме кристалла, а лишь в местах нахождения атомов примеси (такие уровни определяются как локальные). Каждый из локальных уровней производит энергию электрона, в случае его нахождения на примесном атоме. Локальные электронные уровни дают возможность дополнительных электронных переходов. Как пример, ионизация донора с образованием электрона проводимости проиллюстрирована на рисунке 1 в виде электронного перехода 3. Роль обратного ему процесса захвата электрона на атом донора играет электронный переход 4 из зоны проводимости на незаполненный уровень донора.

    Образование энергетических зон

    Из решения задачи о движении электрона в поле периодического потенциала можно сделать вывод, что имеет место система зон разрешённых энергий (рисунок 2). Каждая из зон ограничивается снизу некоторой энергией Wmin или, другими словами, дном зоны, а сверху так называемым потолком зоны Wmax. Данные зоны разделены полосами запрещенных энергий. Ширина разрешенных зон в условиях увеличения энергии возрастает. Возможно перекрытие друг друга широкими зонами, такое явление провоцирует образование единой сложной зоны. Предположим, что существует N изолированных атомов, которые никоим образом не взаимодействуют. В каждом из таких атомов энергия электронов может претерпевать изменения только в виде скачка, таким образом, она характеризуется совокупностью резких, дискретных уровней энергии. В данной системе невзаимодействующих атомов роль каждого атомного энергетического уровня играет N совпадающих уровней энергии. Сократим расстояние между атомами до формирования кристаллической решетки. Атомы начинают взаимодействовать друг с другом, а уровни энергии изменяются. Ранее совпадающие N уровней энергии начинают разниться. Подобная система несовпадающих уровней энергии носит название разрешенной зоны энергий.

    Выходит, что энергетические зоны возникают в качестве результата расщепления дискретных уровней энергии электрона в атомах, вызванного действием атомов решетки. Количество энергетических уровней в каждой из зон крайне большое (порядка числа атомов в кристалле), энергетические уровни расположены довольно близко. Таким образом, в некоторых случаях можно принять, что внутри зон энергия электрона претерпевает непрерывные изменения (как это происходит в классической теории). Однако тот факт, что количество уровней конечно, имеет принципиальное значение. Совокупность энергетических уровней, на которые расщепляется кратный уровень, представляет собой так называемую энергетическую зону или, другими словами, зону кристалла. Зона,возникающая как результат расщепления N-кратного вырожденного основного уровня, носит название основной зоны, все остальные зоны определяются как зоны возбуждения.

    Замечание 1

    Энергетические зоны не могут быть отождествлены с пространственными зонами, областями пространства, в которых находится электрон.

    В рамках зонной теории принимается тот факт, что электрон движется в постоянном электрическом поле, которое формируется ионами и остальными электронами. Ионы обладают сравнительно большими массами и считаются неподвижными. Электроны учитываются суммарно. Они определяются в виде отрицательно заряженной жидкости, которая заполняет пустующее пространство между ионами. В подобной модели роль электронов заключается в компенсации заряда ионов. Электрическое поле модели периодично в пространстве, место периодов занимают пространственные периоды решетки. Задание сводится к задаче о движении одного электрона в постоянном периодическом поле. Решение данной задачи в квантовой механике приводит к зонной структуре энергетических уровней.

    Пример 1

    Дайте описание зонных структур металлов, диэлектриков и полупроводников.

    Решение

    Электрические свойства тел зависимы от ширины запрещенной энергетической зоны и различий в заполнении разрешенных зон. Существование в разрешенной зоне свободных энергетических уровней является необходимым условием возникновения проводимости. На данный уровень поле сторонних сил может перенести электрон. Зону, которая является пустой или же заполнена лишь частично определяется как зона проводимости. В свою очередь, зона, заполненная электронами полностью, носит название валентной. Металлы, диэлектрики и полупроводники отличаются в области степени заполнения валентной зоны электронами, а также шириной запретной зоны. У металлов зона проводимости является частично заполненной и обладает свободными верхними уровнями. При условии T=0 валентные электроны попарно заполняют нижние уровни валентной зоны. Локализованным на верхних уровнях электронам для того, чтобы перевести их на более высокие уровни достаточно подвести энергию 10-23-10-22 эВ. У диэлектриков первая, являющаяся незаполненной зона, отделена от целиком заполненной нижней зоны с помощью широкой запрещенной зоны. Чтобы перевести электрон в свободную зону необходимо сообщить энергию большую или же эквивалентную ширине запретной зоны. Ширина запрещенной зоны диэлектриков является равной нескольким электрон вольтам. Тепловое движение не имеет возможности перевести в свободную зону большое количество электронов. У кристаллических полупроводников ширина запрещенной зоны между полностью заполненной валентной зоной и первой незаполненной зоной довольно мала. Если ширина запретной зоны эквивалентна нескольким десятым эВ, энергии теплового движения хватает для того, чтобы перевести электроны в свободную зону проводимости. При этом вероятен переход электрона внутри валентной зоны на освободившиеся уровни.

    Пример 2

    Перечислите основные предположения зонной теории.

    Решение

    В качестве основных предположений зонной теории можно привести следующие:

    • Ионы в узлах кристаллической решетки рассматриваются как неподвижные, так как они имеют относительно большую массу.
    • Ионы являются источниками электрического поля. Это поле действует на электроны. Размещение положительных ионов является периодическим, так как они находятся в узлах идеальной кристаллической решетки.
    • Взаимодействие электронов заменяют эффективным внешним полем. Электроны взаимодействуют в соответствии с законом Кулона. Это предположение позволяет заменить многоэлектронную задачу задачей с одним электроном.
    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
    Средняя оценка статьи
    4,5 из 5 (20 голосов)