Преобразование рациональных (алгебраических) дробей: виды преобразований, примеры

Преобразование рациональных (алгебраических) дробей: виды преобразований, примеры

    Виды выражений из алгебры могут принимать вид рациональных дробей, которые характерны тождественным преобразованиям этих дробей. Чаще всего можно встретить еще одно название алгебраические дроби. Таким образом, понятия рациональных и алгебраических дробей равнозначны.

    Рассмотрим приведение рациональной дроби к новому знаменателю, смене знаков, сокращению. Подробно остановимся на преобразовании дробей в виде суммы с несколькими показателями. В заключении приведем несколько примеров,  в которых подробно рассмотрим решения.

    Определение и примеры рациональных дробей

    Определение 1

    Рациональная дробь – это дробь,в числителе и знаменателе которой, имеются многочлены с натуральными, целыми и рациональными коэффициентами.

    Многочлены могут быть приведены в нестандартном виде, что говорит о том, что необходимы дополнительные преобразования.

    Рассмотрим примеры рациональных дробей.

    Пример 1

    -2a2·b-b, x+2,3·x+223·x2·y·zx2+y2+z2, х8, 14·x2-3·x+12·x+3 считаются рациональными дробями.

    А 5·(x+y)·y2-x4·y и ab-ba3+1a+1a2 не являются таковыми, так как не имеют выражений с многочленами.

    Преобразования числителя и знаменателя рациональной дроби

    Числитель и знаменатель считаются самодостаточными числовыми выражениями. Отсюда следует, что  с ними можно производить  различные преобразования, то есть в числителе или знаменателе разрешено заменять на тождественное равное ему выражение.

    Чтобы провести тождественные преобразования, необходимо группировать и приводить подобные слагаемые, причем знаменатель заменять на более простое подобное ему выражение. Числители и знаменатели содержат многочлены, значит, что  с ними можно производить преобразования, подобные для многочленов. Это могут быть и приведения к стандартному виду или представление в виде произведения.

    Пример 2

    Преобразовать 3·a-a·b-2·b·56·b+237·a·ba3·b2-5·a2·b+3·a·b-15 таким образом, чтобы числитель получил стандартный вид многочлена, а знаменатель – их произведение.

    Решение

    Для начала необходимо привести к стандартному виду. Применим свойство степени, получим выражение вида

    3·a-a·b-2·b·56·b+237·a·b=3·a-a·b-53·b2+237·a·b==3·a+-α·b+237·a·b-53·b2=3·a+137·a·b-53·b2

    Необходимо выполнить преобразования знаменателя. Представляем его в виде произведения, то есть раскладываем на многочлены. Для этого производим группировку первого и третьего слагаемых, а второго с четвертым. Общий множитель выносим за скобки и получаем выражение вида

    a3·b2-5·a2·b+3·a·b-15=(a3·b2+3·a·b)+(-5·a2·b-15)==a·b·(a2·b+3)-5·(a2·b+3)

    Видно, что полученное выражение имеет общий множитель, который и необходимо вынести за скобки, чтобы получить

    a·b·(a2·b+3)-5·(a2·b+3)=a2·b+3·(a·b-5)

    Теперь подходим к произведению многочленов.

    Проведя преобразования, получаем, что заданная дробь принимает вид 3·a+137·a·b-53·b2a2·b+3·(a·b-5).

    Ответ:  3·a-a·b-2·b·56·b+237·a·ba3·b2-5·a2·b+3·a·b-15=3·a+137·a·b-53·b2a2·b+3·(a·b-5).

    Данные преобразования необходимы для их использования  в преобразованиях.

    Приведение к новому знаменателю

    При изучении обыкновенных дробей знакомимся с основным свойством дроби, которое говорит о том, что при умножении числителя и знаменателя на любое натуральное число, получаем равную предыдущей дробь. Данное свойство распространяется и на рациональные дроби: при умножении на ненулевой многочлен числитель и знаменатель, получим дробь, равную предыдущей.

    Для любых многочленов a, b и c, где  b и c являются ненулевыми, равенство вида ab=a·cb·c справедливо, тогда они являются тождеством. К примеру, x·y+12·x-5=(x·y+1)·(x2+3·b2)(2·x-5)·(x2+3·b2) является справедливым для всей ОДЗ переменных x и y.

    Отсюда следует то, что при решении необходимо воспользоваться приведением рациональной дроби к новому знаменателю. То есть ее умножение и числителя и знаменателя на ненулевой многочлен. В результате получим дробь, равную заданной.

    Если рассмотреть такой пример рациональной дроби вида x-y2·x, то при приведении к новому знаменателю, получим новую, но равную предыдущей. Необходимо умножить числитель и  знаменатель на выражение x2+y, тогда имеем, что выражение  x-y·x2+y2·x·(x2+y) при помощи преобразования примет вид рациональной дроби x3+x·y-x2·y-y22·x3+2·x·y. Такие приведения используются для сложения или вычитания дробей. Углубить знания можно  в разделе приведения алгебраических дробей к новому знаменателю.

    Изменение знаков перед дробью, в ее числителе и знаменателе

    Основное свойство дроби применяется для того, чтобы можно было сменить знаки у членов дроби. Эти преобразования характерны для рациональных дробей.

    Определение 2

    При одновременном изменении знаков у числителя и знаменателя получаем дробь, равную заданной. Это утверждение запишем так -a-b=ab.

    Рассмотрим пример.

    Пример 3

    Дробь вида -x-2x-y заменяют равной ей x+2y-x.

    Определение 3

    При работе с дробями можно менять знак только в числителе или только в знаменателе. При замене знака дроби, получаем тождественно равную дробь. Запишем это утверждение так:

    ab=--ab и ab=-a-b.

    Доказательство

    Для доказательства используется первое свойство. Получаем, что --ab=-((-a):b)=(-1)·(((-1)·a):b)=(-1)·(-1)·a:b=a:b=ab.

    При помощи преобразований доказывается равенство вида ab=-a-b.

    Пример 4

    К примеру, xx-1 заменяем --xx-1 или -x1-x.

    Существуют два полезных равенства вида -ab=-ab и a-b=-ab. Отсюда замечаем, что при изменении знака в числителе или только в знаменателе, изменится знак дроби. Получаем, -3x3·y+z=-3x3·y+z и x+3-x+5=-x+3x-5.

    Чаще всего такие преобразования подходят для дробно рациональных выражений и их преобразований.

    Сокращение рациональных дробей

    Основа преобразования – это свойство дроби.  То есть применяется a·cb·c=ab, где имеем, что a, b и c являются некоторыми многочленами, где b и c – нулевые.

    Пример 5

    Сократить дробь 2·x2·y32·x·y7.

    Решение

    Заметим, что 2 является общим множителем, значит необходимо сократить на него выражение. Получим, что 2·x2·y32·x·y7=2·x2·y32·x·y7=x2·y3x·y7.  Видно, что  x2=x·x и y7=y3·y4, тогда x – это общий множитель. После сокращения получим, что x2·y3x·y7=(x·x)·y3x·(y3·y4)=xy4.  Сокращение выполняется последовательно, что позволяет получать точные ответы 2·x2·y32·x·y7=(2·x·y3)·x(2·x·y3)·y4=xy4.

    Ответ: 2·x2·y32·x·y7=xy4.

    Не всегда виден общий знаменатель при сокращении. Это и есть небольшая проблема. Не всегда это возможно увидеть сразу. Возможно, необходимо будет выполнить разложение числителя и знаменателя на множители. Это упростит решение. Подробно нюансы рассмотрены в теме сокращения алгебраических дробей.

    При сокращении важно обратить внимание на то, что чаще всего необходимо раскладывать и числитель и знаменатель на множители.

    Представление рациональной дроби в виде суммы дробей

    Если имеется несколько дробей, то преобразование производится особым образом. Такую рациональную дробь необходимо представить в виде выражения, где имеются одночлены.

    Пример 6

    К примеру, 3·a2+a·b-5a+b=3·a2a+b+a·ba+b-5a+b.

    Это основано на правиле сложения и вычитания дробей с одинаковыми знаменателями.

    Любая рациональная дробь представляется в виде суммы дробей разными способами. Запишем это в виде утверждения ab=cd+ab-cd. Если x·y-xx+1 представлять в виде суммы дробей, тогда получаем выражения вида

    x·y-xx+1=1x+x2·y-x2-x-1x2+x, x·y-xx+1=xx-1+x2·y-x·y-2x2x2-1 и так далее.

    В особую группу выделяют представления рациональных дробей с одной переменной. Когда показатель такой дроби больше или равен степени показателя знаменателя, тогда переходим к преобразованию суммы рационального выражения. То есть выполняется деления многочлена на многочлен.

    Пример 7

    Какие значения n являются целым числом дроби n4-2·n3+4·n-5n-2?

    Решение

    Необходимо представить исходную дробь в виде суммы выражений и дроби. После деления числителя и знаменателя, получим выражение вида n4-2·n3+4·n-5n-2=n3+4+3n-2. Отсюда видно, что n3+4 при  любом n будет целым числом. А дробь 3n-2 принимает целые значения при n=3, n=1, n=5 и n=1.

    Ответ: 1, 1, 3, 5.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter