Векторное пространство: размерность и базис, разложение вектора по базису, базис линейного пространства

Векторное пространство: размерность и базис, разложение вектора по базису

    В статье о n-мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n-мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

    Введем некоторые определения.

    Определение 1

    Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

    Определение 2

    Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

    Рассмотрим некое пространство n-векторов. Размерность его соответственно равна n. Возьмем систему из n-единичных векторов:

    e(1)=(1, 0,...,0)e(2)=(0, 1,...,0)e(n)=(0, 0,...,1)

    Используем эти векторы в качестве составляющих матрицы A: она будет являться единичной с размерностью n на n. Ранг этой матрицы равен n. Следовательно, векторная система e(1), e(2),..., e(n) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

    Так как число векторов в системе равно n, то размерность пространства n-мерных векторов равна n, а единичные векторы e(1), e(2),..., e(n) являются базисом указанного пространства.

    Из полученного определения сделаем вывод: любая система n-мерных векторов, в которой число векторов меньше n, не является базисом пространства.

    Если мы поменяем местами первый и второй вектор, получим систему векторов e(2), e(1),..., e(n). Она также будет являться базисом n-мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n. Система e(2), e(1),..., e(n) линейно независима и является базисом n-мерного векторного пространства.

    Переставив местами в исходной системе другие векторы, получим еще один базис.

    Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n-мерного векторного пространства.

    Определение 3

    Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n-мерных векторов числом n.

    Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

    Рассмотрим применение данной теории на конкретных примерах.

    Пример 1

    Исходные данные: векторы

    a=(3, -2, 1)b=(2, 1, 2)c=(3, -1, -2)

    Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

    Решение

    Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

    A=323-21-112-2A=3-212123-1-2=3·1·(-2)+(-2)·2·3+1·2·(-1)-1·1·3-(-2)·2·(-2)-3·2·(-1)==-250Rank(A)=3

    Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

    Ответ: указанные векторы являются базисом векторного пространства.

    Пример 2

    Исходные данные: векторы

    a=(3, -2, 1)b=(2, 1, 2)c=(3, -1, -2)d=(0, 1, 2)

    Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

    Решение

    Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a=(3, -2, 1), b=(2, 1, 2), c=(3, -1, -2) является базисом.

    Ответ: указанная система векторов не является базисом.

    Пример 3

    Исходные данные: векторы

    a=(1, 2, 3, 3)b=(2, 5, 6, 8)c=(1, 3, 2, 4)d=(2, 5, 4, 7)

    Могут ли они являться базисом четырехмерного пространства?

    Решение

    Cоставим матрицу, используя в качестве строк координаты заданных векторов

    A=1233256813242547

    По методу Гаусса определим ранг матрицы:

    A=1233256813242547~1233010201-1101-21~~1233010200-1-100-2-1~1233010200-1-10001Rank(A)=4

    Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

    Ответ: заданные векторы являются базисом четырехмерного пространства.

    Пример 4

    Исходные данные: векторы

    a(1)=(1, 2, -1, -2)a(2)=(0, 2, 1, -3)a(3)=(1, 0, 0, 5)

    Составляют ли они базис пространства размерностью 4?

    Решение

    Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

    Ответ: нет, не составляют.

    Разложение вектора по базису

    Примем, что произвольные векторы e(1), e(2),..., e(n) являются базисом векторного n-мерного пространства. Добавим к ним некий n-мерный вектор x: полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

    Таким образом, мы пришли к формулировке важнейшей теоремы:

    Определение 4

    Любой вектор n-мерного векторного пространства единственным образом раскладывается по базису.

    Доказательство 1

    Докажем эту теорему:

    зададим базис n-мерного векторного пространства - e(1), e(2),..., e(n). Сделаем систему линейно зависимой, добавив к ней n-мерный вектор x. Этот вектор может быть линейно выражен через исходные векторы e:

    x=x1·e(1)+x2·e(2)+...+xn·e(n) , где x1, x2,..., xn - некоторые числа.

    Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

    x=x~1e(1)+x2~e(2)+...+x~ne(n), где x~1, x~2,..., x~n - некие числа.

    Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x=x1·e(1)+x2·e(2)+...+xn·e(n) . Получим:

    0=(x~1-x1)·e(1)+(x~2-x2)·e(2)+...(x~n-xn)·e(2)

    Система базисных векторов e(1), e(2),..., e(n) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты (x~1-x1), (x~2-x2),..., (x~n-xn) будут равны нулю. Из чего справедливым будет: x1=x~1, x2=x~2,..., xn=x~n. И это доказывает единственный вариант разложения вектора по базису.

    При этом коэффициенты x1, x2,..., xn называются координатами вектора x в базисе e(1), e(2),..., e(n).

    Доказанная теория делает понятным выражение «задан n-мерный вектор x=(x1, x2,..., xn)»: рассматривается вектор x n-мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n-мерного пространства будет иметь другие координаты.

    Рассмотрим следующий пример: допустим, что в некотором базисе n-мерного векторного пространства задана система из n линейно независимых векторов

    e(1)=(e1(1), e2(1),..., en(1))e(2)=(e1(2), e2(2),..., en(2))e(n)=(e1(n), e2(n),..., en(n))

    а также задан вектор x=(x1, x2,..., xn).

    Векторы e1(1), e2(2),..., en(n) в этом случае также являются базисом этого векторного пространства.

    Предположим, что необходимо определить координаты вектора x в базисе e1(1), e2(2),..., en(n), обозначаемые как x~1, x~2,..., x~n.

    Вектор x будет представлен следующим образом:

    x=x~1·e(1)+x~2·e(2)+...+x~n·e(n)

    Запишем это выражение в координатной форме:

    (x1, x2,..., xn)=x~1·(e(1)1, e(1)2,..., e(1)n)+x~2·(e(2)1, e(2)2,..., e(2)n)+...++x~n·(e(n)1, e(n)2,..., e(n)n)==(x~1e1(1)+x~2e1(2)+...+x~ne1(n), x~1e2(1)+x~2e2(2)++...+x~ne2(n), ..., x~1en(1)+x~2en(2)+...+x~nen(n))

    Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x~1, x~2,..., x~n:

    x1=x~1e11+x~2e12+...+x~ne1nx2=x~1e21+x~2e22+...+x~ne2nxn=x~1en1+x~2en2+...+x~nenn

    Матрица этой системы будет иметь следующий вид:

    e1(1)e1(2)e1(n)e2(1)e2(2)e2(n)en(1)en(2)en(n)

    Пусть это будет матрица A, и ее столбцы – векторы линейно независимой системы векторов e1(1), e2(2),..., en(n). Ранг матрицы – n, и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x~1, x~2,..., x~n вектора x в базисе e1(1), e2(2),..., en(n).

    Применим рассмотренную теорию на конкретном примере.

    Пример 6

    Исходные данные: в базисе трехмерного пространства заданы векторы

    e(1)=(1,-1,1)e(2)=(3, 2, -5)e(3)=(2, 1, -3)x=(6, 2, -7)

    Необходимо подтвердить факт, что система векторов e(1), e(2), e(3) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

    Решение

    Система векторов e(1), e(2), e(3) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A, строки которой – заданные векторы e(1), e(2), e(3).

    Используем метод Гаусса:

    A=1-1132-521-3~1-1105-803-5~1-1105-800-15

    Rank (A) = 3. Таким образом, система векторов e(1), e(2), e(3) линейно независима и является базисом.

    Пусть в базисе вектор x имеет координаты x~1, x~2, x~3. Связь этих координат определяется уравнением:

    x1=x~1e1(1)+x~2e1(2)+x~3e1(3)x2=x~1e2(1)+x~2e2(2)+x~3e2(3)x3=x~1e3(1)+x~2e3(2)+x~3e3(3)

    Применим значения согласно условиям задачи:

    x~1+3x~2+2x~3=6-x~1+2x~2+x~3=2x~1-5x~2-3x3=-7

    Решим систему уравнений методом Крамера:

    =132-1211-5-3=-1x~1=632221-7-5-3=-1,     x~1=x~1=-1-1=1x~2=162-1211-7-3=-1,     x~2=x~2=-1-1=1x~3=136-1221-5-7=-1,     x~3=x~3=-1-1=1

    Так, вектор x в базисе e(1), e(2), e(3) имеет координаты x~1=1, x~2=1, x~3=1.

    Ответ: x=(1,1,1)

    Связь между базисами

    Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

    c(1)=(c1(1), c2(1),..., cn(1))c(2)=(c1(2), c2(2),..., cn(2))c(n)=(c1(n), e2(n),..., cn(n))

    И

    e(1)=(e1(1), e2(1),..., en(1))e(2)=(e1(2), e2(2),..., en(2))e(n)=(e1(n), e2(n),..., en(n))

    Указанные системы являются также базисами заданного пространства.

    Пусть c~1(1), c~2(1),..., c~n(1) - координаты вектора c(1) в базисе e(1), e(2),..., e(3), тогда связь координат будет задаваться системой линейных уравнений:

    с1(1)=c~1(1)e1(1)+c~2(1)e1(2)+...+c~n(1)e1(n)с2(1)=c~1(1)e2(1)+c~2(1)e2(2)+...+c~n(1)e2(n)                                                           сn(1)=c~1(1)en(1)+c~2(1)en(2)+...+c~n(1)en(n)

    В виде матрицы систему можно отобразить так:

    (c1(1), c2(1),..., cn(1))=(c~1(1), c~2(1),..., c~n(1))·e1(1)e2(1)en(1)e1(2)e2(2)en(2)e1(n)e2(n)en(n)

    Сделаем по аналогии такую же запись для вектора c(2):

    (c1(2), c2(2),..., cn(2))=(c~1(2), c~2(2),..., c~n(2))·e1(1)e2(1)en(1)e1(2)e2(2)en(2)e1(n)e2(n)en(n)

    И, далее действуя по тому же принципу, получаем:

    (c1(n), c2(n),..., cn(n))=(c~1(n), c~2(n),..., c~n(n))·e1(1)e2(1)en(1)e1(2)e2(2)en(2)e1(n)e2(n)en(n)

    Матричные равенства объединим в одно выражение:

    c1(1)c2(1)cn(1)c1(2)c2(2)cn(2)c1(n)c2(n)cn(n)=c~1(1)c~2(1)c~n(1)c~1(2)c~2(2)c~n(2)c~1(n)c~2(n)c~n(n)·e1(1)e2(1)en(1)e1(2)e2(2)en(2)e1(n)e2(n)en(n)

    Оно и будет определять связь векторов двух различных базисов.

    Используя тот же принцип, возможно выразить все векторы базиса e(1), e(2),..., e(3) через базис c(1), c(2),..., c(n):

    e1(1)e2(1)en(1)e1(2)e2(2)en(2)e1(n)e2(n)en(n)=e~1(1)e~2(1)e~n(1)e~1(2)e~2(2)e~n(2)e~1(n)e~2(n)e~n(n)·c1(1)c2(1)cn(1)c1(2)c2(2)cn(2)c1(n)c2(n)cn(n)

    Дадим следующие определения:

    Определение 5

    Матрица c~1(1)c~2(1)c~n(1)c~1(2)c~2(2)c~n(2)c~1(n)c~2(n)c~n(n) является матрицей перехода от базиса e(1), e(2),..., e(3)

    к базису c(1), c(2),..., c(n).

    Определение 6

    Матрица e~1(1)e~2(1)e~n(1)e~1(2)e~2(2)e~n(2)e~1(n)e~2(n)e~n(n) является матрицей перехода от базиса c(1), c(2),..., c(n)

    к базису e(1), e(2),..., e(3).

    Из этих равенств очевидно, что

    c~1(1)c~2(1)c~n(1)c~1(2)c~2(2)c~n(2)c~1(n)c~2(n)c~n(n)·e~1(1)e~2(1)e~n(1)e~1(2)e~2(2)e~n(2)e~1(n)e~2(n)e~n(n)=100010001e~1(1)e~2(1)e~n(1)e~1(2)e~2(2)e~n(2)e~1(n)e~2(n)e~n(n)·c~1(1)c~2(1)c~n(1)c~1(2)c~2(2)c~n(2)c~1(n)c~2(n)c~n(n)=100010001 

    т.е. матрицы перехода взаимообратны.

    Рассмотрим теорию на конкретном примере.

    Пример 7

    Исходные данные: необходимо найти матрицу перехода от базиса

    c(1)=(1, 2, 1)c(2)=(2, 3, 3)c(3)=(3, 7, 1)

    к базису

    e(1)=(3, 1, 4)e(2)=(5, 2, 1)e(3)=(1, 1, -6)

    Также нужно указать связь координат произвольного вектора x в заданных базисах.

    Решение

    1. Пусть T – матрица перехода, тогда верным будет равенство:

    314521111=T·121233371

    Умножим обе части равенства на

    121233371-1

    и получим:

    T=31452111-6·121233371-1

    2. Определим матрицу перехода:

    T=31452111-6·121233371-1==31452111-6·-18537-2-15-1-1=-2794-712012-4198

    3. Определим связь координат вектора x:

    допустим, что в базисе c(1), c(2),..., c(n) вектор x имеет координаты x1,x2,x3, тогда:

    x=(x1,x2,x3)·121233371,

    а в базисе e(1), e(2),..., e(3) имеет координаты x~1,x~2,x~3, тогда:

    x=(x~1,x~2,x~3)·31452111-6

    Т.к. равны левые части этих равенств, мы можем приравнять и правые:

    (x1,x2,x3)·121233371=(x~1,x~2,x~3)·31452111-6

    Умножим обе части справа на

    121233371-1

    и получим:

    (x1,x2,x3)=(x~1,x~2,x~3)·31452111-6·121233371-1(x1,x2,x3)=(x~1,x~2,x~3)·T(x1,x2,x3)=(x~1,x~2,x~3)·-2794-712012-4198

    С другой стороны

    (x~1,x~2,x~3)=(x1,x2,x3)·-2794-712012-4198

    Последние равенства показывают связь координат вектора x в обоих базисах.

    Ответ: матрица перехода

    -2794-712012-4198

    Координаты вектора x в заданных базисах связаны соотношением:

    (x1,x2,x3)=(x~1,x~2,x~3)·-2794-712012-4198

    или

    (x~1,x~2,x~3)=(x1,x2,x3)·-2794-712012-4198-1

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
    Средняя оценка статьи
    4,8 из 5 (6 голосов)