Универсальная тригонометрическая подстановка, вывод формул, примеры, как выразить синус через тангенс, универсальная тригонометрическая подстановка

Универсальная тригонометрическая подстановка, вывод формул, примеры

    Данная статья посвящена разбору такой темы, как универсальная тригонометрическая подстановка. Суть данного термина состоит в том, что мы находим значение любой тригонометрической функции (sin α, cos α, tg α, ctg α) через формулу тангенса половинного угла. Этот вариант намного проще и рациональнее, так как выполнять дальнейшие вычисления легче без корней, а с целыми числами.

    Мы подробно рассмотрим этот раздел. Для начала мы расскажем вам о формулах тангенса половинного угла, которой мы будем часто пользоваться. После мы перейдем к практическому применении формул, рассмотрим несколько примеров использования универсальной тригонометрической подстановки.

    Универсальная тригонометрическая подстановка для sin α, cos α, tg α, ctg α

    Во введении мы рассказали, что основной темой этого раздела станет основная тригонометрическая подстановка. Для начала запишем и разберем формулы, с помощью которых можно выразить sin α, cos α, tg α, ctg α через тангенс половинного угла α2 .

    sin α=2·tgα21+tg2α2,  cos α=1-tg2α21+tg2α2tg α=2·tgα21-tg2α2,    ctg=1-tg2α22·tgα2

    Указанные формулы будут правильны для всех углов α . Для работы в задаче должен быть определен входящие тангенсы и котангенсы.

    Формулы для sin α и cos αsin α=2·tgα21+tg2α2 и   cos α=1-tg2α21+tg2α2 имеют место для aπ+2π·z , где z – любое целое число, так как при a=π+2π·z,  tg α2 не определен.

    Формула tg α=2·tgα21-tg2α2 справедлива для απ2+π·z и aπ+2π·z , так как при a=π2+π·z не определен tg αЗнаменатель дроби обращается в нуль, а при α=π+2π·z не определен tg α2 .

    Формула ctg=1-tg2α22·tgα2 , выражающая ctg через tg α2 , справедлива для aπ·z , так как при a=π·z не определен ctg, при a=π+2π·z не определен tg α2, а при α=2π·z знаменатель дроби обращается в нуль.

    Вывод формул

    Разберем вывод формул, выражающих sin α, cos α, tg α, ctg α через тангенс половинного угла. Начнем с формул для синуса и косинуса. Представим синус и косинус по формулам двойного угла как sin α=2·sin α2·cosα2 и cos α=cos2α2-sin2α2 соответственно. Теперь выражения 2·sinα2·cosα2 и cos2α2-sin2α2 запишем в виде дробей со знаменателем 1 как 2·sinα2·cosα21 и cos2α2-sin2α21 . Воспользуемся основным тождеством из тригонометрии и заменим единицы в знаменателе на сумму квадратов sin и cos, после чего получаем 2·sinα2·cosα2sin2α2+cos2α2 и cos2α2-sin2α2sin2α2+cos2α2

    Для решения данного выражения необходимо числитель и знаменатель полученных дробей разделить на cos2α2 (его значение не равно нулю при условии απ+2π·z ). Вся формула будет выглядеть так sin α=2·sinα2·cosα2=2·sinα2·cosα2sin2α2+cos2α2=2·sinα2·cosα2cos2α2sin2α2+cos2α2cos2α2=2·sinα2cosα2sin2α2сos2α2+cos2α2сos2α2=2·tgα2tg2α2+1 

    и cos α=cos2α2-sin2α2=cos2α2-sin2α21=cos2α2-sin2α2sin2α2+cos2α2==cos2α2-sin2α2cos2α2sin2α2+cos2α2cos2α2=cos2α2cos2α2-sin2α2cos2α2sin2α2cos2α2+cos2α2cos2α2=1-tg2α2tg2α2+1

    Мы закончили вывод формул для sin и cos, завершив все вычислительные действия.

    Следующий шаг – это вывод определенных формул для нахождения tg и ctg.

    Взяв за основу описанные выше примеры tg α=sin αcos α и ctg α=cos αsin α , мы сразу получаем формулы, которые выражают тангенс и котангенс через тангенс половинного угла:

    tg α=sin αcos α=2·tg α21+tg2 α21-tg2 α21+tg2 α2=2·tg α21-tg2 α2;

    ctg α= cos αsin α=1-tg2 α21+tg2 α22·tg α21+tg2 α2=1-tg2 α22·tg α2;

    В этом разделе мы нашли все формулы, которые нам потребуются для выражения основных тригонометрических функций.

    Примеры использования в задачах и упражнениях

    Для начала рассмотрим пример применения универсальной тригонометрической подстановки при преобразовании выражений.

    Пример 1

    Необходимо привести 2+3·cos 4αsin 4α-5 к примеру, который содержит только одну функцию tg 2α.

    В данном упражнении мы также воспользуемся универсальной подстановкой, которая является одним из важных правил тригонометрии. Применим к косинусу и синусу 4α те самые формулировки, которые выражают основные функции через тангенс половинного угла. Получив сложное выражение, нам остается только его упростить.

    2+3·cos 4αsin 4α-5=2+tg22αtg22α+12·tg2αtg22α+1-5=2·tg22α+2+3-3·tg22αtg22α+12·tg2α-5·2·tg22α-5tg22α+1=tg22α-55·tg22α-2·tg2α+5

    2+3·cos 4αsin 4α-5=tg22α-55·tg22α-2·tg2α+5.

    Вспомним, что во введении мы подробно рассказали, как менять sin α, cos α, tg α, ctg α в частных случаях. Она заключается в том, чтобы преобразовать первоначальное рациональное выражение, содержащее sin, cos, tg и ctg, к выражению с одной функцией благодаря формуле. Это намного проще и понятнее. Мы выражаем все формулы через tg половинного угла. Данное преобразование обязательно пригодится при решении разнообразных уравнений и задач, интегрировании основных функций sin α, cos α, tg α, ctg α.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter