Деление корней: правила, методы, примеры как делить квадратные корни

Деление корней: правила, методы, примеры

    Наличие квадратных корней в выражении усложняет процесс деления, однако существуют правила, с помощью которых работа с дробями становится значительно проще.

    Единственное, что необходимо все время держать в голове —  подкоренные выражения делятся на подкоренные выражения, а множители на множители. В процессе деления квадратных корней мы упрощаем дробь. Также, напомним, что корень может находиться в знаменателе.

    Метод 1. Деление подкоренных выражений

    Алгоритм действий:

    Записать дробь

    Если выражение не представлено в виде дроби, необходимо его так записать, потому так легче следовать принципу деления квадратных корней.

    Пример 1

    144÷36, это выражение следует переписать так: 14436

    Использовать один знак корня

    В случае если и в числителе, и знаменателе присутствует квадратные корни, необходимо записать их подкоренные выражения под одним знаком корня, чтобы сделать процесс решения проще.

    Напоминаем, что подкоренным выражением (или числом) является выражением под знаком корня.

    Пример 2

    14436. Это выражение следует записать так: 14436

    Разделить подкоренные выражения

    Просто разделите одно выражение на другое, а результат запишите под знаком корня.

    Пример 3

    14436=4, запишем это выражение так: 14436=4

    Упростить подкоренное выражение (если необходимо)

    Если подкоренное выражение или один из множителей представляют собой полный квадрат, упрощайте такое выражение.

    Напомним, что полным квадратом является число, которое представляет собой квадрат некоторого целого числа.

    Пример 4

    4 - полный квадрат, потому что 2×2=4. Из этого следует:

    4=2×2=2. Поэтому 14436=4=2.

    Метод 2. Разложение подкоренного выражения на множители

    Алгоритм действий:

    Записать дробь

    Перепишите выражение в виде дроби (если оно представлено так). Это значительно облегчает процесс деления выражений с квадратными корнями, особенно при разложении на множители. 

    Пример 5

    8÷36, переписываем так 836

    Разложить на множители каждое из подкоренных выражений

    Число под корнем разложите на множители, как и любое другое целое число, только множители запишите под знаком корня.

    Пример 6

    836=2×2×26×6

    Упростить числитель и знаменатель дроби

    Для этого следует вынести из-под знака корня множители, представляющие собой полные квадраты. Таким образом, множитель подкоренного выражения станет множителем перед знаком корня.

    Пример 7

    2266×62×2×2, из этого следует: 836=226

    Рационализировать знаменатель (избавиться от корня)

    В математике существуют правила, по которым оставлять корень в знаменателе — признак плохого тона, т.е. нельзя. Если в знаменателе присутствует квадратный корень, то избавляйтесь от него. 

    Умножьте числитель и знаменатель на квадратный корень, от которого необходимо избавиться.

    Пример 8

    В выражении 623 необходимо умножить числитель и знаменатель на 3, чтобы избавиться от него в знаменателе:

    623×33=62×33×3=669=663

    Упростить полученное выражение (если необходимо)

    Если в числителе и знаменателе присутствуют числа, которые можно и нужно сократить. Упрощайте такие выражения, как и любую дробь.

    Пример 9

    26 упрощается до 13; таким образом 226упрощается до 123=23

     

    Метод 3. Деление квадратных корней с множителями

    Алгоритм действий:

    Упростить множители

    Напомним, что множители представляют собой числа, стоящие перед знаком корня. Для упрощения множителей понадобится разделить или сократить их. Подкоренные выражения не трогайте!

    Пример 10

    432616. Сначала сокращаем 46: делим на 2 и числитель, и знаменатель: 46=23.

    Упростить квадратные корни

    Если числитель нацело делится на знаменатель, то делите. Если нет, то упрощайте подкоренные выражения, как и любые другие.

    Пример 11

    32 делится нацело на 16, поэтому: 3216=2

    Умножить упрощенные множители на упрощенные корни

    Помним про правило: не оставлять в знаменателе корни. Поэтому просто перемножаем числитель и знаменатель на этот корень.

    Пример 12

    23×2=223

    Рационализировать знаменатель (избавиться от корня в знаменателе)

    Пример 13

    4327. Следует умножить числитель и знаменатель на 7, чтобы избавиться от корня в знаменателе.

    437×77=43×77×7=42149=4217

    Метод 4. Деление на двучлен с квадратным корнем

    Алгоритм действий:

    Определить, находится ли двучлен (бином) в знаменателе

    Напомним, что двучлен представляет собой выражение, которое включает 2 одночлена. Такой метод имеет место быть только в случаях, когда в знаменателе двучлен с квадратным корнем.

    Пример 14

    15+2— в знаменателе присутствует бином, поскольку есть два одночлена.

    Найти выражение, сопряженное биному

    Напомним, что сопряженный бином является двучленом с теми же одночленами, но с противоположными знаками. Чтобы упростить выражение и избавиться от корня в знаменателе, следует перемножить сопряженные биномы.

    Пример 15

    5+2и 5-2 - сопряженные биномы.

    Умножить числитель и знаменатель на двучлен, который сопряжен биному в знаменателе

    Такая опция поможет избавиться от корня в знаменателе, поскольку произведение сопряженных двучленов равняется разности квадратов каждого члена биномов: (a-b)(a+b)=a2-b2

    Пример 16

    15+2=1(5-2)(5+2)+(5-2)=5-2(52-(2)2=5+225-2=5+223.

    Из этого следует: 15+2=5+223.

    Советы: 

    1. Если вы  работаете с квадратными корнями смешанных чисел, то преобразовывайте их в неправильную дробь. 
    2. Отличие сложения и вычитания от деления — подкоренные выражения в случае деления не рекомендуется упрощать (за счет полных квадратов).
    3. Никогда (!) не оставляйте корень в знаменателе.
    4. Никаких десятичных дробей или смешанных перед корнем — необходимо преобразовать их в обыкновенную дробь, а потом упростить.
    5. В знаменателе сумма или разность двух одночленов? Умножьте такой бином на сопряженный ему двучлен и избавьтесь от корня в знаменателе.
    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter