Перевод корней в степени и обратно: объяснение, примеры

Перевод корней в степени и обратно: объяснение, примеры

    Часто преобразование и упрощение математических выражений требует перехода от корней к степеням  и наоборот. Данная статья рассказывает о том, как осуществлять перевод корня в степень и обратно. Рассматривается теория, практические примеры и наиболее распространенные ошибки.

    Переход от степеней с дробными показателями к корням

    Допустим, мы имеем число с показателем степени в виде обыкновенной дроби - amn. Как записать такое выражение в виде корня?

    Ответ вытекает из самого определения степени! 

    Определение

    Положительное число a в степени mn - это корень степени n из числа am.

    amn=amn.

    При этом, обязательно должно выполнятся условие:

    a>0; m; n.

    Дробная степень числа нуль определяется аналогично, однако в этом случае число m принимается не целым, а натуральным, чтобы не возникло деления на 0:

    0mn=0mn=0.

    В соответствии с определением, степень amn можно представить в виде корня amn.

    Например: 325=325, 123-34=123-34.

    Однако, как уже было сказано, не следует забывать про условия: a > 0 ;   m ∈ ℤ ;   n ∈ ℕ .

    Так, выражение -813 нельзя представить в виде -813, так как запись -813 попросту не имеет смысла - степень отрицательных чисел на определена.При этом, сам корень -813 имеет смысл.

    Переход от  степеней с выражениями в основании и дробными показателями осуществляется аналогично на всей области допустимых значений (далее - ОДЗ) исходных выражений в основании степени. 

    Например, выражение x2+2x+1-412 можно представить в виде квадратного корня x2+2x+1-4.Выражение в степени x2+x·y·z-z3-73 переходит в выражение x2+x·y·z-z3-73 для всех x, y, z из ОДЗ данного выражения.

    Как представить корень в виде степени?

    Обратная замена корней степенями, когда вместо выражения с корнем записывается выражения со степенью, также возможна. Просто перевернем равенство из предыдущего пункта и получим:

    amn=amn

    Опять же, переход очевиден для положительных чисел a. Например, 764=764, или27-53=27-53.

    Для отрицательных a корни имеют смысл. Например -426-23. Однако, представить эти корни в виде степеней  -426 и -213 нельзя.  

    Можно ли вообще преобразовать такие выражения со степенями? Да, если произвести некоторые предварительные преобразования. Рассмотрим, какие.

    Используя свойства степеней, можно выполнить преобразования  выражения -426.

    -426=-12·426=426.

    Так как 4>0, можно записать: 

    426=426.

    В случае с корнем нечетной степени из отрицательного числа, можно записать:

    -a2m+1=-a2m+1.

    Тогда выражение -23 примет вид:

    -23=-23=-213.

    Разберемся теперь, как корни, под которыми содержатся выражения, заменяются на степени, содержащие эти выражения в основании. 

    Обозначим буквой A некоторое выражение. Однако не будем спешить с представлением Amn в виде Amn. Поясним, что здесь имеется в виду. Например, выражение х-323, основываясь на равенстве из первого пункта, хочется представить в виде x-323. Такая замена возможна только при x-30, а для остальных икс из ОДЗ она не подходит, так как для отрицательных a формула amn=amn не имеет смысла.

    Таким образом, в рассмотренном примере преобразование вида Amn=Amn является преобразованием, сужающим ОДЗ, а из-за неаккуратного применения формулы Amn=Amn нередко возникают ошибки. 

    Чтобы правильно перейти от корня Amn к степени Amn, необходимо соблюдать несколько пунктов:

    • В случае, если число m - целое и нечетное, а n - натуральное и четное, то формула  Amn=Amn справедлива на всей ОДЗ переменных.
    • Если m - целое и нечетное, а n - натуральное и нечетное,то выражение Amn можно заменить:
       - на Amn для всех значений переменных, при которых A0;
       - на --Amn для  для всех значений переменных, при которых A<0;
    • Если  m - целое и четное, а n - любое натуральное число, то Amn можно заменить на Amn.

    Сведем все эти правила в таблицу и приведем несколько примеров их использования.

    как представить корень в виде степени

    Вернемся к выражению х-323. Здесь m=2 - целое и четное число, а n=3 - натуральное число. Значит, выражение х-323 правильно будет записать в виде:

    х-323=x-323.

    Приведем еще один пример с корнями и степенями.

    Пример. Перевод корня в степень

    x+5-35=x+5-35, x>-5--x-5-35, x<-5

    Обоснуем результаты, приведенные в таблице. Если число m - целое и нечетное, а n - натуральное и четное, для всех переменных из ОДЗ в выражении Amn значение A положительно или неотрицательно (при m>0). Именно поэтому  Amn=Amn.

    Во втором варианте, когда  m - целое, положительное и нечетное, а n - натуральное и нечетное, значения Amn разделяются. Для переменных из ОДЗ, при которых A неотрицательно, Amn=Amn=Amn. Для переменных, при которых A отрицательно, получаем Amn=-Amn=-1m·Amn=-Amn=-Amn=-Amn.

    Аналогично рассмотрим и следующий случай, когда m - целое и четное, а n - любое натуральное число. Если значение Aположительно или неотрицательно, то для таких значений переменных из ОДЗ Amn=Amn=Amn. Для отрицательных A получаем Amn=-Amn=-1m·Amn=Amn=Amn.

    Таким образом, в третьем случае для всех переменных из ОДЗ можно записать Amn=Amn.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
    Средняя оценка статьи
    4,9 из 5 (7 голосов)